Match them up: visually explainable few-shot image classification

نویسندگان

چکیده

Abstract Few-shot learning (FSL) approaches, mostly neural network-based, assume that pre-trained knowledge can be obtained from base (seen) classes and transferred to novel (unseen) classes. However, the black-box nature of networks makes it difficult understand what is actually transferred, which may hamper FSL application in some risk-sensitive areas. In this paper, we reveal a new way perform for image classification, using visual representation backbone model patterns generated by self-attention based explainable module. The weighted only includes minimum number distinguishable features visualized serve as an informative hint on knowledge. On three mainstream datasets, experimental results prove proposed method enable satisfying explainability achieve high classification results. Code available at https://github.com/wbw520/MTUNet .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visually Explainable Recommendation

Images account for a significant part of user decisions in many application scenarios, such as product images in e-commerce, or user image posts in social networks. It is intuitive that user preferences on the visual patterns of image (e.g., hue, texture, color, etc) can be highly personalized, and this provides us with highly discriminative features to make personalized recommendations. Previo...

متن کامل

Few-shot Classification by Learning Disentangled Representations

Machine learning has improved state-of-the art performance in numerous domains, by using large amounts of data. In reality, labelled data is often not available for the task of interest. A fundamental problem of artificial intelligence is finding a representation that can generalize to never seen before classes. In this research, the power of generative models is combined with disentangled repr...

متن کامل

Meta-Learning for Semi-Supervised Few-Shot Classification

In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...

متن کامل

Few-Shot Image Recognition by Predicting Parameters from Activations

In this paper, we are interested in the few-shot learning problem. In particular, we focus on a challenging scenario where the number of categories is large and the number of examples per novel category is very limited, i.e. 1, 2, or 3. Motivated by the close relationship between the parameters and the activations in a neural network associated with the same category, we propose a novel method ...

متن کامل

Few-shot Object Detection

In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named “few-shot object detection”. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2022

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-022-04072-4